3 years ago

Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species

Wastewater from textile industries contains azo dye residues that negatively affect most environmental systems. The biological treatment of these wastes is the best option due to safety and cost concerns. Here we isolated and identified 19 azo dye-degrading fungi and optimized conditions resulting in enhanced degradation. The fungi belonged to five species of Aspergillus and a single Lichtheimia sp. All fungi were evaluated for their ability to decolorize 20 azo dyes. While the most easily transformable azo dye was direct violet (decolorization ranged from 71.1 to 93.3%), the most resistant to decolorization was fast green azo dye. The greatest degradation potential of azo dyes (direct violet and methyl red) was optimized using the most promising four fungal strains and changing media glucose concentration, nitrogen source, and micronutrients. Biomass, lignin peroxidase, and laccases production were also determined in the optimization studies. The decolorization of both azo dyes by the four fungal strains was greatly enhanced by glucose supplementation. The fungal strains were not able to produce lignin peroxidases in the absence of organic nitrogen source. Both yeast extract and casamino acid supplementation enhanced decolorization of direct violet and methyl red dyes and production of lignin peroxidase by the fungal strains. In contrast, the laccases were absent in the similar medium enriched with the same organic nitrogen sources.

Publisher URL: www.sciencedirect.com/science

DOI: S0168165617316255

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.