5 years ago

Cation Exchange Induced Transformation of InP Magic-Sized Clusters

Cation Exchange Induced Transformation of InP Magic-Sized Clusters
Jennifer L. Stein, Alessio Petrone, Simon J. L. Billinge, Maxwell W. Terban, Xiaosong Li, Brandi M. Cossairt, Molly I. Steimle
Magic-sized clusters (MSCs) can provide valuable insight into the atomically precise progression of semiconductor nanocrystal transformations. We report the conversion of an InP MSC to a Cd3P2 MSC through a cation exchange mechanism and attempt to shed light on the evolution of the physical and electronic structure of the clusters during the transformation. Utilizing a combination of spectroscopic (NMR/UV–vis) and structural characterization (ICP-OES/MS/PXRD/XPS/PDF) tools, we demonstrate retention of the original InP MSC crystal lattice as Z-type ligand exchange initially occurs. Further cation exchange induces lattice relaxation and a significant structural rearrangement. These observations contrast with reports of cation exchange in InP quantum dots, indicating unique reactivity of the InP MSC.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b03075

DOI: 10.1021/acs.chemmater.7b03075

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.