3 years ago

SBH10: A Benchmark Database of Barrier Heights on Transition Metal Surfaces

SBH10: A Benchmark Database of Barrier Heights on Transition Metal Surfaces
Alan C. Luntz, Geert-Jan Kroes, Thomas Bligaard, Jens K. Nørskov, Shaama Mallikarjun Sharada
While the performance of density functional approximations (DFAs) for gas phase reaction energetics has been extensively benchmarked, their reliability for activation barriers on surfaces is not fully understood. The primary reason for this is the absence of well-defined, chemically accurate benchmark databases for chemistry on surfaces. We present a database of 10 surface barrier heights for dissociation of small molecules, SBH10, based on carefully chosen references from molecular beam scattering, laser assisted associative desorption, and thermal experiments. Our benchmarking study compares the performance of a dispersion-corrected generalized gradient approximation (GGA-vdW), BEEF-vdW, a meta-GGA, MS2, and a screened hybrid functional, HSE06. In stark contrast to gas phase reactions for which GGAs systematically underestimate barrier heights and hybrids tend to be most accurate, the BEEF-vdW functional determines barriers accurately to within 0.14 eV of experiments, while MS2 and HSE06 underestimate barrier heights on surfaces. Higher accuracy of BEEF-vdW stems from the fact that the functional is trained on chemisorption systems, and transition states for dissociation on surfaces closely resemble the final, chemisorbed states. Therefore, a functional that can describe chemisorption accurately can also reliably predict barrier heights on surfaces.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05677

DOI: 10.1021/acs.jpcc.7b05677

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.