5 years ago

Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling

N-cadherin, a transmembrane protein and major component of adherens junction, mediates cell-cell interactions and intracellular signaling that are important to the regulation of cell behaviors and organ development. Previous studies have identified mimetic peptides that possess similar bioactivity as that of N-cadherin, which promotes chondrogenesis of human mesenchymal stem cells (hMSCs); however, the molecular mechanism remains unknown. In this study, we combined the N-cadherin mimetic peptide (HAVDI) with the self-assembling KLD-12 peptide: the resultant peptide is capable of self-assembling into hydrogels functionalized with N-cadherin peptide in phosphate-buffered saline (PBS) at 37 °C. Encapsulation of hMSCs in these hydrogels showed enhanced expression of chondrogenic marker genes and deposition of cartilage specific extracellular matrix rich in proteoglycan and Type II Collagen compared to control hydrogels, with a scrambled-sequence peptide after 14 days of chondrogenic culture. Furthermore, western blot showed a significantly higher expression of active glycogen synthase kinase-3β (GSK-3β), which phosphorylates β-catenin and facilitates ubiquitin-mediated degradation, as well as a lower expression of β-catenin and LEF1 in the N-cadherin peptide hydrogels versus controls. Immunofluorescence staining revealed significantly less nuclear localization of β-catenin in N-cadherin mimetic peptide hydrogels. Our findings suggest that N-cadherin peptide hydrogels suppress canonical Wnt signaling in hMSCs by reducing β-catenin nuclear translocation and the associated transcriptional activity of β-catenin/LEF-1/TCF complex, thereby enhancing the chondrogenesis of hMSCs. Our biomimetic self-assembled peptide hydrogels can serve as a tailorable and versatile three-dimensional culture platform to investigate the effect of biofunctionalization on stem cell behavior.

Publisher URL: www.sciencedirect.com/science

DOI: S0142961217305410

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.