5 years ago

Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds

There is great interest in the application of advanced proteomic techniques to characterize decellularized tissues in order to develop a deeper understanding of the effects of the complex extracellular matrix (ECM) composition on the cellular response to these pro-regenerative bioscaffolds. However, the identification of proteins in ECM-derived bioscaffolds is hindered by the high abundance of collagen in the samples, which can interfere with the detection of lower-abundance constituents that may be important regulators of cell function. To address this limitation, we developed a novel multi-enzyme digestion approach using treatment with a highly-purified collagenase derived from Clostridium Histolyticum to selectively deplete collagen from ECM-derived protein extracts, reducing its relative abundance from up to 90% to below 10%. Moreover, we applied this new method to characterize the proteome of human decellularized adipose tissue (DAT), human decellularized cancellous bone (DCB), and commercially-available bovine tendon collagen (BTC). We successfully demonstrated with all three sources that collagenase treatment increased the depth of detection and enabled the identification of a variety of signaling proteins that were masked by collagen in standard digestion protocols with trypsin/LysC, increasing the number of proteins identified in the DAT by ∼2.2 fold, the DCB by ∼1.3 fold, and the BTC by ∼1.6 fold. In addition, quantitative proteomics using label-free quantification demonstrated that the DAT and DCB extracts were compositionally distinct, and identified a number of adipogenic and osteogenic proteins that were consistently more highly expressed in the DAT and DCB respectively. Overall, we have developed a new processing method that may be applied in advanced mass spectrometry studies to improve the high-throughput proteomic characterization of bioscaffolds derived from mammalian tissues. Further, our study provides new insight into the complex ECM composition of two human decellularized tissues of interest as cell-instructive platforms for regenerative medicine.

Publisher URL: www.sciencedirect.com/science

DOI: S0142961217305227

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.