5 years ago

Molecular Assemblies of Metal Complexes via Base-Pairing of Nucleic Acids in the Crystalline State

Molecular Assemblies of Metal Complexes via Base-Pairing of Nucleic Acids in the Crystalline State
Manabu Nakaya, Shinya Hayami, Ryo Ohtani, Masaaki Nakamura, Leonard F. Lindoy, Kunihisa Sugimoto
The nature of the molecular assemblies formed in the crystalline state by cobalt(II) terpyridine (terpy) complexes incorporating appended adenine (A) or thymine (T) bases was found to be controlled by which bases are present. Single-crystals of the cobalt(II) complexes [Co(A-C6-terpy)2](BF4)2 (1) and [Co(T-C6-terpy)2](BF4)2 (2) have needle and block habits, respectively. Subsequent mixing of 1 and 2 in MeOH resulted in isolation of [Co(A-C6-terpy)1.5(T-C6-terpy)0.5](BF4)2 (3) as plate-like crystals. A 3D network structure is present in 1 that incorporates 1D chains, whereas 2 adopts a 2D stacked structure constructed from ladder-type assemblies. For 3, “dimer-rings” consisting of [Co(A-C6-terpy)2]2+ and [Co(A-C6-terpy)(T-C6-terpy)]2+ units are generated by means of base-pairing between A and T. Notably, 3 displays the first crystal structure of a heteroleptic cobalt(II) complex of [Co(A-C6-terpy)(T-C6-terpy)](BF4)2. These assembly differences involving the terpyridine cobalt(II) complex units in 1–3 affect the cooperativities influencing their spin crossover (SCO) behavior. The influence of the terminal nucleobases on the resulting assembly has been probed by investigating the co-crystallization of [Co(terpy)2](BF4)2 (4) with [Co(C6-terpy)2](BF4)2 (5) and 1 with 5. Complex Cobalt Crystals! Molecular assemblies of the nucleobase-appended cobalt(II) complexes [Co(A-C6-terpy)2](BF4)2 (1) and [Co(T-C6-terpy)2](BF4)2 (2) have been investigated. Subsequent mixing of 1 and 2 in MeOH resulted in isolation of [Co(A-C6-terpy)1.5(T-C6-terpy)0.5](BF4)2 (3), which is the first crystal structure of a heteroleptic cobalt(II) complex of [Co(A-C6-terpy)(T-C6-terpy)](BF4)2.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201700593

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.