5 years ago

Drug/ion co-delivery multi-functional nanocarrier to regenerate infected tissue defect

Regeneration of infected tissues is a globally challenging issue in medicine and dentistry. Common clinical therapies involving a complete removal of infected areas together with a treatment of antimicrobial drugs are often suboptimal. Biomaterials with anti-bacterial and pro-regenerative potential can offer a solution to this. Here we design a novel nanocarrier based on a mesoporous silicate-calcium glass by doping with Ag ions and simultaneously loading antimicrobial drugs onto mesopores. The nanocarriers could controllably release multiple ions (silver, calcium, and silicate) and drugs (tetracycline or chlorohexidine) to levels therapeutically relevant, and effectively internalize to human dental stem cells (∼90%) with excellent viability, ultimately stimulating odontogenic differentiation. The release of Ag ions had profound effects on most oral bacteria species through a membrane rupture, and the antibiotic delivery complemented the antibacterial functions by inhibiting protein synthesis. Of note, the nanocarriers easily anchored to bacteria membrane helping the delivery of molecules to an intra-bacterial space. When administered to an infected dentin-pulp defect in rats, the therapeutic nanocarriers effectively regenerated tissues following a complete bacterial killing. This novel concept of multiple-delivering ions and drug can be extensively applied to other infectious tissues that require relayed biological functions (anti-bacterial then pro-regenerative) for successful healing.

Publisher URL: www.sciencedirect.com/science

DOI: S0142961217304660

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.