5 years ago

Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization

Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization
Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric and micro-computed tomographic analyses. The bioactive nanoparticles releasing both Sr ion and Phenamil drug are considered to be a promising therapeutic nanocarrier platform for hard tissue regeneration. Furthermore, this novel ion/drug co-delivery concept through nanoparticles can be extensively used for other tissues that require different therapeutic treatment. Statement of Significance This study reports a novel design concept in inorganic nanoparticle delivery system for hard tissues – the co-delivery of therapeutic molecules comprised of ion (Sr) and drug (Phenamil) through a unique nanoparticle of mesoporous bioactive glass (MBN). The physico-chemical and biological properties of MBN enabled an effective loading of both therapeutic molecules and a subsequently sustained/controlled release. The co-delivered Sr and Phenamil demonstrated significant stimulation of adult stem cell differentiation in vitro and osseous/dentinal regeneration in vivo, through BMP signaling pathways. We consider the current combination of Sr ion with Phenamil is suited for the osteo/odontogenesis of stem cells for hard tissue regeneration, and further, this ion/drug co-delivery concept can extend the applications to other areas that require specific cellular and tissue functions.

Publisher URL: www.sciencedirect.com/science

DOI: S1742706117304580

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.