5 years ago

Unsaturated nitrogen-rich polymer poly(L-histidine) gated reversibly switchable mesoporous silica nanoparticles using “graft to” strategy for drug controlled release

Unsaturated nitrogen-rich polymer poly(L-histidine) gated reversibly switchable mesoporous silica nanoparticles using “graft to” strategy for drug controlled release
A novel and intelligent pH-controlled system having an “on-off” switch based on poly(L-histidine) (PLH) and poly(ethylene glycol) (PEG) coated mesoporous silica nanoparticles (MSNs) (MSNs-PLH-PEG) was designed and evaluated for tumor specific drug release. The unsaturated nitrogen-rich polymer, PLH, which can change its solubility at different pH values, was employed for establishing the reversible “on-off” switch. In vitro drug release results demonstrated that MSNs-PLH-PEG has a pH-controlled “on-off” profile with the change of pH value between pH 7.4 and 5.0. Furthermore, in vitro cellular uptake study results showed that the entrapped drug could be efficiently released from MSNs-PLH-PEG under acidic endosome/lysosome. In vitro cell cytotoxicity and in vivo antitumor studies results indicated that sorafenib loaded MSNs-PLH-PEG exhibited good anti-proliferation and tumor growth inhibition effects. Haemolysis assay and histological analysis of MSNs-PLH-PEG showed negligible haemolysis activity and no visible tissue toxicity at the test dose. This study represents a promising and intelligent pH-controlled intelligent system for drug delivery and controlled release. Statement of Significance A novel pH-controlled intelligent and reversible “on-off” switch system based on poly(L-histidine) and poly(ethylene glycol) coated mesoporous silica nanoparticles (MSNs-PLH-PEG) by “graft to” synthesis method was constructed for tumor specific drug release. The unsaturated nitrogen-rich pH-sensitive polymer, PLH, which can change its solubility in different pH values, was employed as the reversible “on-off” switch in MSNs for the first time. The pH-controlled “on-off” switch manner was observed in the drug release results in vitro. In the in vivo antitumor studies, sorafenib loaded MSNs-PLH-PEG could effectively suppressed tumor growth in H22 tumor bearing mice. It is expected that the pH-controlled intelligent “on-off” switch system we designed holds remarkable promise and provides valuable strategy for possible applications in cancer therapy.

Publisher URL: www.sciencedirect.com/science

DOI: S1742706117305639

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.