3 years ago

Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering

Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering
Electrospun scaffolds provide a promising approach for tissue engineering as they mimic the physical properties of extracellular matrix. Previous studies have demonstrated that electrospun scaffolds with porous features on the surface of single fibers, enhanced cellular attachment and proliferation. Yet, little is known about the effect of such topographical cues on cellular differentiation. Here, we aimed at investigating the influence of surface roughness of electrospun scaffolds on skeletal differentiation of human mesenchymal stromal cells (hMSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the surface nanoroughness of fibers was successfully regulated via humidity control of the electrospinning environment. Gene expression analysis revealed that a higher surface roughness (roughness average (Ra)=71.0±11.0nm) supported more induction of osteogenic genes such as osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2), while a lower surface roughness (Ra=14.3±2.5nm) demonstrated higher expression of other osteogenic genes including bone sialoprotein (BSP), collagen type I (COL1A1) and osteocalcin (OCN). Interestingly, a lower surface roughness (Ra=14.3±2.5nm) better supported chondrogenic gene expression of hMSCs at day 7 compared to higher surface roughness (Ra=71.0±11.0nm). Taken together, modulating surface roughness of 3D scaffolds appears to be a significant factor in scaffold design for the control of skeletal differentiation of hMSCs. Statement of Significance Tissue engineering scaffolds having specific topographical cues offer exciting possibilities for stimulating cells differentiation and growth of new tissue. Although electrospun scaffolds have been extensively investigated in tissue engineering and regenerative medicine, little is known about the influence of introducing nanoroughness on their surface for cellular differentiation. The present study provides a method to engineer electrospun scaffolds with tailoring surface nanoroughness and investigates the effect of such topographical cues on the process of human mesenchymal stromal cells differentiation into osteoblasts and chondrocytes linages. This strategy may help the design of nanostructured scaffolds for skeletal tissue engineering.

Publisher URL: www.sciencedirect.com/science

DOI: S1742706117304324

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.