5 years ago

Excessive trabeculations in noncompaction do not have the embryonic identity

Ventricular noncompaction is characterized by excessive trabeculations and is associated with heart failure. The lesion is hypothesized to result from failed compaction and thus retention of embryonic trabeculations. Here, we assess for the first time the identity of trabeculations in noncompaction to test whether noncompacted hearts show retention of embryonic trabeculations. Methods Using immunohistochemistry, we analyzed cardiac sections of the heart of a control embryo, 3 cases of fetal noncompaction (a set of twins and an unrelated fetus) and 3 fetal hearts without noncompaction. Results In the embryo, the ventricular trabeculations strongly expressed ANF/NPPA whereas the compact wall did not. In the noncompaction hearts, trabeculations constituted an excessively thick layer. In noncompaction and control fetal hearts alike, however, only a miniscule subset of sub-endocardial myocardium of the trabeculations most proximal to the central ventricular lumen exhibited strong expression of ANF/NPPA, representing Purkinje myocardium. The trabeculations of both fetal control and noncompaction hearts were ANF-negative and orders of magnitude wider than those of the embryo. Both the compact and noncompaction trabeculated myocardium were rich in coronary vasculature. Like embryonic trabeculations, the ANF+ Purkinje myocardium had little if any vasculature. Conclusion The excessive trabeculations in noncompaction do not have the embryonic identity and noncompaction is probably not the result of failed compaction. We propose the lesion results from the compact wall growing into the ventricular lumen in a trabecular fashion.

Publisher URL: www.sciencedirect.com/science

DOI: S0167527316335458

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.