3 years ago

Inadequacy of existing clinical prediction models for predicting mortality after transcatheter aortic valve implantation

The performance of emerging transcatheter aortic valve implantation (TAVI) clinical prediction models (CPMs) in national TAVI cohorts distinct from those where they have been derived is unknown. This study aimed to investigate the performance of the German Aortic Valve, FRANCE-2, OBSERVANT and American College of Cardiology (ACC) TAVI CPMs compared with the performance of historic cardiac CPMs such as the EuroSCORE and STS-PROM, in a large national TAVI registry. Methods The calibration and discrimination of each CPM were analyzed in 6676 patients from the UK TAVI registry, as a whole cohort and across several subgroups. Strata included gender, diabetes status, access route, and valve type. Furthermore, the amount of agreement in risk classification between each of the considered CPMs was analyzed at an individual patient level. Results The observed 30-day mortality rate was 5.4%. In the whole cohort, the majority of CPMs over-estimated the risk of 30-day mortality, although the mean ACC score (5.2%) approximately matched the observed mortality rate. The areas under ROC curve were between 0.57 for OBSERVANT and 0.64 for ACC. Risk classification agreement was low across all models, with Fleiss's kappa values between 0.17 and 0.50. Conclusions Although the FRANCE-2 and ACC models outperformed all other CPMs, the performance of current TAVI-CPMs was low when applied to an independent cohort of TAVI patients. Hence, TAVI specific CPMs need to be derived outside populations previously used for model derivation, either by adapting existing CPMs or developing new risk scores in large national registries.

Publisher URL: www.sciencedirect.com/science

DOI: S0002870316302447

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.