3 years ago

A suicidal strain of Listeria monocytogenes is effective as a DNA vaccine delivery system for oral administration

In this study we determined the in vivo activity of model ovalbumin vaccines delivered by direct intramuscular delivery of plasmid DNA or oral delivery using a recombinant suicidal Listeria monocytogenes strain (rsΔ2). In a previous report we described how rsΔ2 is capable of delivering luciferase, as protein or DNA, in vitro, into non-dividing intestinal epithelial cells (Kuo et al., 2009). This is achieved by engineering a dual expression shuttle vector, pDuLX-Luc, that replicates in E. coli and rsΔ2 and drives gene expression from the Listeria promoter (Phly) as well as the eukaryotic cytomegalovirus promoter (CMV), thereby delivering both protein and plasmid DNA to the cell cytoplasm. For the current in vivo study rsΔ2 containing pDuLX-OVA was used to deliver both ovalbumin protein and the mammalian expression plasmid by the oral route. Controls were used to investigate the activity of this system versus positive and negative controls, as well as quantifying activity against direct intramuscular injection of expression plasmids. Oral administration of rsΔ2(pDuLX-OVA) produced significant titres of antibody and was effective at inducing targeted T-cell lysis (approximately 30% lysis relative to an experimental positive control, intravenous OVA-coated splenocytes+lipopolysaccharide). Intramuscular injection of plasmids pDuLX-OVA or p3L-OVA (which lacks the prokaryotic promoter) also produced significant CTL-mediated cell lysis. The delivery of the negative control rsΔ2 (pDuLX-Luc) confirmed that the observed activity was induced specifically by the ovalbumin vaccination. The data suggest that the oral activity of rsΔ2(pDuLX-OVA) is explained by delivery of OVA protein, expressed in rsΔ2 from the prokaryotic promoter present in pDuLX-OVA, but transfection of mammalian cells in vivo may also play a role. Antibody titres were also produced by oral delivery (in rsΔ2) of the p3L-OVA plasmid in which does not include a prokaryotic promoter.

Publisher URL: www.sciencedirect.com/science

DOI: S0264410X17310812

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.