3 years ago

Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss?

The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.

Publisher URL: www.sciencedirect.com/science

DOI: S0099239917307641

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.