5 years ago

Accuracy of Cone-beam Computed Tomography in Measuring Dentin Thickness and Its Potential of Predicting the Remaining Dentin Thickness after Removing Fractured Instruments

The purpose of this study was to evaluate the accuracy of cone-beam computed tomographic (CBCT) to measure dentin thickness and its potential of predicting the remaining dentin thickness after the removal of fractured instrument fragments. Methods Twenty-three human mandibular molars were selected, and 4-mm portions of #25/.06 taper K3 files (SybronEndo, Orange, CA) were fractured in mesial canals. The teeth were then scanned using a micro–computed tomographic (micro-CT) system and a CBCT unit. Dentin thickness was measured and compared between both micro-CT and CBCT images to study the accuracy of CBCT readings. Then, the process of removing the fragments was simulated in CBCT images using the MeVisLab package (MeVis Research, Bremen, Germany); the predicted minimal remaining dentin thickness after removal was measured in different layers using VGStudio MAX software (Volume Graphics, Heidelberg, Germany). Data were compared with the actual minimal remaining dentin thickness acquired from micro-CT images, which were scanned after removing fractured instruments using the microtrepan technique. The results were analyzed statistically using intraclass correlation coefficients (ICCs) and a forecasting regression model analysis. Results The ICC for the dentin thickness was 0.988. The forecasting regression model of CBCT imaging estimating dentin thickness was micro-CT imaging = 15.835 + 1.080*CBCT, R 2 = 0.963. The ICC for the remaining dentin thickness was 0.975 (P < .001). The forecasting regression model of CBCT imaging forecasting remaining dentin thickness was micro-CT imaging = 147.999 + 0.879*adjusted CBCT, R 2 = 0.906. Conclusions The study showed that CBCT imaging could measure dentin thickness accurately. Furthermore, using CBCT images, it is reliable and feasible to forecast the remaining dentin thickness after simulated instrument removal.

Publisher URL: www.sciencedirect.com/science

DOI: S0099239917303771

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.