5 years ago

Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage

Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage
Christophe Detrembleur, Olle Inganäs, Shimelis Admassie, Nagaraj Patil, Farid Ouhib, Christine Jérôme, Abdelhafid Aqil
Redox-active catechols are bioinspired precursors for ortho-quinones that are characterized by higher discharge potentials than para-quinones, the latter being extensively used as organic cathode materials for lithium ion batteries (LIBs). Here, this study demonstrates that the rational molecular design of copolymers bearing catechol- and Li+ ion-conducting anionic pendants endow redox-active polymers (RAPs) with ultrarobust electrochemical energy storage features when combined to carbon nanotubes as a flexible, binder-, and metal current collector-free buckypaper electrode. The importance of the structure and functionality of the RAPs on the battery performances in LIBs is discussed. The structure-optimized RAPs can store high-capacities of 360 mA h g−1 at 5C and 320 mA h g−1 at 30C in LIBs. The high ion and electron mobilities within the buckypaper also enable to register 96 mA h g−1 (24% capacity retention) at an extreme C-rate of 600C (6 s for total discharge). Moreover, excellent cyclability is noted with a capacity retention of 98% over 3400 cycles at 30C. The high capacity, superior active-material utilization, ultralong cyclability, and excellent rate performances of RAPs-based electrode clearly rival most of the state-of-the-art Li+ ion organic cathodes, and opens up new horizons for large-scalable fabrication of electrode materials for ultrarobust Li storage. The facile combination of copolymers bearing redox-active catechols and Li+ ion conducting groups with carbon nanotubes provides flexible, binder-, and metal current collector-free buckypaper composite cathodes for Li storage. Their high-capacity, ultralong cyclability, and excellent rate performances may open up new horizons in developing an economical and environmentally benign platform for large-scalable fabrication of electrode materials for ultrarobust Li storage.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201703373

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.