4 years ago

Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth

To evaluate, in vitro, the effects of ionizing radiation on the mechanical and micro-morphological properties of enamel and dentin of permanent teeth. Methods Enamel and dentin microhardness (n =12 hemi-sections) was evaluated at three depths (superficial, middle and deep) prior to (control) and after every 10Gy radiation dose up to a cumulative dose of 60Gy by means of longitudinal microhardness. Data were analyzed using two-way analysis of variance and Tukey's test at a significance level of 5%. Enamel and dentin morphology was assessed by scanning electron microscopy (SEM) for semi-quantitative analysis (n =8 hemi-sections). Data were analyzed using Kruskal–Wallis and Dunn's or Fisher exact tests at a significance level of 5%. Results The application of ionizing radiation did not change the overall enamel microhardness, although an increase in superficial enamel microhardness was observed. The micro-morphological analysis of enamel revealed that irradiation did not influence rod structure but interprismatic structure became more evident. Dentin microhardness decreased after 10, 20, 30, 50 and 60Gy cumulative doses (p <0.05) compared with non-irradiated dentin, mainly in the middle portion of the tissue. The micro-morphological analysis revealed fissures in the dentin structure, obliterated dentinal tubules and fragmentation of collagen fibers after 30 and 60Gy cumulative doses. Conclusions Although ionizing radiation did not affect the enamel microhardness of permanent teeth as a whole, an increase in superficial enamel microhardness was observed. Dentin microhardness decreased after almost all radiation doses compared with the control, with the greatest reduction of microhardness in the middle depth region. The morphological alterations on enamel and dentin structures increased with the increase of the radiation dose, with a more evident interprismatic portion, presence of fissures and obliterated dentinal tubules, and progressive fragmentation of the collagen fibers. Clinical significance This study shows that irradiation affects microhardness and micro-morphology of enamel and dentin of permanent teeth. The effects of gamma irradiation on dental substrate might contribute to increased risk of radiation tooth decay associated with salivary changes, microbiota shift and high soft and carbohydrate-rich food intake.

Publisher URL: www.sciencedirect.com/science

DOI: S0300571214001559

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.