5 years ago

Graphene-wrapped Porous Sb Anodes for Sodium-Ion Batteries by Mechanochemical Compositing and Metallomechanical Reduction of Sb2O3

Graphene-wrapped Porous Sb Anodes for Sodium-Ion Batteries by Mechanochemical Compositing and Metallomechanical Reduction of Sb2O3
Antimony metal nanoparticles wrapped with a-few-layer graphene coat (Sb@Gn) were fabricated from their oxide form (Sb2O3) in a micrometer dimension using a novel two-step ball-milling process. The first mechanochemical process was designed to decrease the particle size of Sb2O3 microparticles for ensuring advantages of nano size and to subsequently coat the Sb2O3 nanoparticles with a-few-layer graphene (Sb2O3@Gn). The second metallomechanical ball-milling process reduced the oxide to its metal form (Sb@Gn) by the help of Zn as a metallic reductant. The graphene layer (@Gn) blocked the alloying reaction between Sb and Zn, limiting the size of Sb particles during the metallomechanical reduction step. During reduction, oxygen species were transferred from of Sb2O3 through @Gn to Zn along redox transfer pathways rather than direct mass transfer via unsaturated vacancies in the @Gn. the redox transfer involving oxidation of @Gn by O2− is plausible routes for O2− transfer in the metallomechanical reduction. The Sb@Gn anode exhibited outstanding capacity retention along charge/discharge cycles and improved rate capability in sodium-ion batteries. The @Gn provided conductive pathways to the Sb core and limited size expansion during sodium-lithium alloying.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617318261

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.