3 years ago

Deletion of Dlk2 increases the vulnerability to anxiety-like behaviors and impairs the anxiolytic action of alprazolam

The purpose of this study was to evaluate the role of the non-canonical DLK2 NOTCH ligand in the regulation of emotional behavior. To this aim, anxiety and depressive-like behaviors were examined in Dlk2 knock-out (Dlk2 –/–) and its corresponding wild-type (WT) mice. Furthermore, relative gene expression analyses of corticotropin releasing hormone (Crh) in the paraventricular nucleus (PVN), glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) in the hippocampus (HIPP), and the transcription factors Hes1, Hes5 and Hey1 in the PVN, HIPP and amygdala (AMY) were carried out in Dlk2–/– and WT mice under basal conditions and after exposure to restraint stress. The anxiolytic action of alprazolam and the relative gene expression levels of the GABA-A alpha 2 and gamma 2 receptor subunits (Gabra2 and Gabrg2) were also evaluated in the HIPP and AMY of WT and Dlk2–/– mice. The results reveal that deletion of Dlk2 increased anxiety and depressive-like behaviors and altered the vulnerability to restraint stress on Crh gene expression in the PVN, Nr3c1 and Fkbp5 gene expression in the HIPP, and Hes1, Hes5 and Hey1 gene expression in the PVN, HIPP and AMY. Interestingly, the administration of alprazolam failed to produce an anxiolytic action in Dlk2 –/– mice. Indeed, Gabra2 and Gabrg2 gene expression levels were significantly affected under basal conditions and after stress exposure in Dlk2 –/– mice compared with WT mice. In conclusion, the results suggest that DLK2 plays an important role in the regulation of emotional behaviors and relevant targets of the stress axis, NOTCH pathway and GABAergic neurotransmission. In addition, the deletion of Dlk2 blocked the anxiolytic response to alprazolam. Future studies are needed to determine the relevance of DLK2 as a potential therapeutic target for the treatment of neuropsychiatric disorders with anxiety or depressive-like behaviors.

Publisher URL: www.sciencedirect.com/science

DOI: S0306453017301944

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.