5 years ago

Methylation dictates PI.f-specific CYP19 transcription in human glial cells

CYP19 is the single copy gene encoding for the estrogen synthetic enzyme aromatase. Alternate splicing of the promoter is the regulatory mechanism of this gene. In the brain, estrogen is synthesized in neuronal and glial cells and the gene is mainly regulated by the alternate promoter PI.f. The hormone produced in this vicinity has been associated with maintaining normal brain functions. Previously, epigenetic regulation has been shown in the promoters PII and I.3 of CYP19 in adipocytes. In the present study, the methylation of PI.f in CYP19 was examined in glial cells. Treatment of the hypomethylating agent 5-aza-2′deoxycytidine increased CYP19 mRNA species in U87 MG cells while little changes were observed in the other glia cell lines. As PI.f is also chiefly used in T98G cells with high expression of CYP19, the methylation statuses of the promoter in these two cell models were compared. Our results showed that treating U87 MG cells with 10 μM 5-aza-2′deoxycytidine significantly induced a ∼10-fold increase in CYP19 transcription and ∼80% increase in aromatase activity. In contrast, the same treatment did not change either endpoint in T98G cells. Further investigation illustrated the CpGs in PI.f were differentially methylated in the two cell lines; 63% and 37% of the 14 CpG sites were methylated in U87 MG and T98G cells respectively. In conclusion, this study illustrated that the brain-specific PI.f derived CYP19 expression can be regulated by DNA methylation.

Publisher URL: www.sciencedirect.com/science

DOI: S0303720717302988

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.