5 years ago

GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner

The putative estrogen receptor GPER1 (the former orphan receptor GPR30) is discussed to be involved in emotional and cognitive functions and stress control. We recently described the induction of anxiety-like effects by the GPER1 agonist G-1 upon systemic injection into mice. To contribute to a better understanding of the role of GPER1 in anxiety and stress, we investigated germ-line GPER1 deficient mice. Our experiments revealed marked differences between the sexes. A mild but consistent phenotype of increased exploratory drive was observed in the home cage, the elevated plus maze and the light–dark choice test in male GPER1 KO mice. In contrast, female GPER1-KO mice displayed a less pronounced phenotype in these tests. Estrous-stage dependent mild anxiolytic-like effects were observed solely in the open field test. Notably, we observed a strong shift in acute stress coping behavior in the tail suspension test and basal corticosterone levels in different phases of the estrous cycle in female GPER1-KO mice. Our data, in line with previous reports, suggest that GPER1 is involved in anxiety and stress control. Surprisingly, its effects appear to be stronger in male than female mice.

Publisher URL: www.sciencedirect.com/science

DOI: S0018506X14001871

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.