Transposable Elements Direct The Coevolution between Plants and Microbes
Transposable elements are powerful drivers of genome evolution in many eukaryotes. Although they are mostly considered as ‘selfish' genetic elements, increasing evidence suggests that they contribute to genetic variability; particularly under stress conditions. Over the past few years, the role of transposable elements during host–microbe interactions has been recognised. It has been proposed that many pathogenic microbes have evolved a ‘two-speed' genome with regions that show increased variability and that are enriched in transposable elements and pathogenicity-related genes. Plants similarly display structured genomes with transposable-element-rich regions that mediate accelerated evolution. Immune receptor genes typically reside in such regions. Various mechanisms have recently been identified through which transposable elements contribute to the coevolution between plants and their associated microbes.
Publisher URL: http://www.cell.com/trends/genetics/fulltext/S0168-9525(17)30112-9
DOI: 10.1016/j.tig.2017.07.003
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.