5 years ago

Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936

Structural measures of the hippocampus have been linked to a variety of memory processes and also to broader cognitive abilities. Gross volumetry has been widely used, yet the hippocampus has a complex formation, comprising distinct subfields which may be differentially sensitive to the deleterious effects of age, and to different aspects of cognitive performance. However, a comprehensive analysis of multidomain cognitive associations with hippocampal deformations among a large group of cognitively normal older adults is currently lacking. In 654 participants of the Lothian Birth Cohort 1936 (mean age = 72.5, SD = 0.71 years), we examined associations between the morphology of the hippocampus and a variety of memory tests (spatial span, letter-number sequencing, verbal recall, and digit backwards), as well as broader cognitive domains (latent measures of speed, fluid intelligence, and memory). Following correction for age, sex, and vascular risk factors, analysis of memory subtests revealed that only right hippocampal associations in relation to spatial memory survived type 1 error correction in subiculum and in CA1 at the head (β = 0.201, p = 5.843 × 10−4, outward), and in the ventral tail section of CA1 (β = −0.272, p = 1.347 × 10−5, inward). With respect to latent measures of cognitive domains, only deformations associated with processing speed survived type 1 error correction in bilateral subiculum (β absolute ≤ 0.247, p < 1.369 × 10−4, outward), bilaterally in the ventral tail section of CA1 (β absolute ≤ 0.242, p < 3.451 × 10−6, inward), and a cluster at the left anterior-to-dorsal region of the head (β = 0.199, p = 5.220 × 10−6, outward). Overall, our results indicate that a complex pattern of both inward and outward hippocampal deformations are associated with better processing speed and spatial memory in older age, suggesting that complex shape-based hippocampal analyses may provide valuable information beyond gross volumetry.

Publisher URL: www.sciencedirect.com/science

DOI: S0197458016303189

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.