5 years ago

Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage- and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women

DNA methylation analysis of cancer-related genes is a promising tool for HPV-positive women to identify those with cervical (pre)cancer (CIN3+) in need of treatment. However, clinical performance of methylation markers can be influenced by the sample type utilized. We describe a multiplex quantitative methylation-specific PCR that targets FAM19A4 and mir124-2 loci, to detect CIN3+ using both HPV-positive lavage- and brush self-samples. Methods We determined methylation thresholds for clinical classification using HPV-positive training sets comprising lavage self-samples of 182 women (including 40 with CIN3+) and brush self-samples of 224 women (including 61 with CIN3+). Subsequently, independent HPV-positive validation sets of 389 lavage self-samples (including 78 with CIN3+), and 254 brush self-samples (including 72 with CIN3+) were tested using the preset thresholds. Furthermore, the clinical performance of combined methylation analysis and HPV16/18 genotyping was determined. Results Training set analysis revealed similar FAM19A4 and mir124-2 thresholds for both self-sample types to yield highest CIN3+ sensitivity at 70% specificity. Validation set analysis resulted in a CIN3+ sensitivity of 70.5% (95%CI: 60.4–80.6) at a specificity of 67.8% (95%CI: 62.7–73.0) for lavage self-samples, and a CIN3+ sensitivity of 69.4% (95%CI: 58.8–80.1) at a 76.4% (95%CI: 70.2–82.6) specificity for brush self-samples. In combination with HPV16/18 genotyping, CIN3+ sensitivity and specificity were 88.5% (95%CI: 81.4–95.6) and 46.0% (95%CI: 40.4–51.5) for lavage self-samples, and 84.7% (95%CI: 76.4–93.0) and 54.9% (95%CI: 47.7–62.2) for brush self-samples. Conclusions FAM19A4/mir124-2 methylation analysis performs equally well in HPV-positive lavage- and brush self-samples to identify women with CIN3+. In combination with HPV16/18 genotyping, significantly higher CIN3+ sensitivities are obtained, at decreased specificity.

Publisher URL: www.sciencedirect.com/science

DOI: S0090825816300361

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.