5 years ago

The responses of macrophages in interaction with neutrophils that undergo NETosis

The responses of macrophages in interaction with neutrophils that undergo NETosis
Neutrophil extracellular traps (NETs) are net-like chromatin fibers decorated with antimicrobial proteins, which are released from dying neutrophils. The death of neutrophils with NET formation is called NETosis. Although NETs play important roles in the innate immunity, especially in the elimination of microbes, the extracellular release of DNA and intra-cytoplasmic/nuclear proteins can, on the other hand, result in diverse adversities to the hosts. Therefore, NETosis is adequately regulated in vivo. Currently, two mechanisms, namely DNase I-dependent digestion and phagocytosis by macrophages, have been shown as such regulatory mechanisms. In this study, we focused on the interaction of macrophages and neutrophils that underwent NETosis. Results demonstrated that macrophages displayed a phenotype-dependent response after degradation of NETs. Several hours after the interaction, M2 macrophages induced a pro-inflammatory response, while M1 macrophages underwent cell death with nuclear decondensation. This nuclear decondensation of M1 macrophages occurred in a peptidylarginine deiminase 4-dependent manner and resulted in a local release of extracellular DNA. Thereafter, M1 macrophages degraded DNA derived from themselves in a caspase-activated DNase-dependent manner resulting in the clearance of extracellular DNA within 24 h. This transient increase and subsequent clearance mechanism of extracellular DNA seems very reasonable in terms of the double-edged sword-like property of NETs. The collective findings demonstrate a novel phenotype- and time-dependent regulation of NETosis by macrophages.

Publisher URL: www.sciencedirect.com/science

DOI: S0896841115300366

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.