4 years ago

Investigating the maturation of microstructure and radial orientation in the preterm human cortex with diffusion MRI

Preterm birth disrupts and alters the complex developmental processes in the cerebral cortex. This disruption may be a contributing factor to widespread delay and cognitive difficulties in the preterm population. Diffusion-weighted magnetic resonance imaging (DW MRI) is a noninvasive imaging technique that makes inferences about cellular structures, at scales smaller than the imaging resolution. One established finding is that DW MRI shows a transient radial alignment in the preterm cortex. In this study, we quantify this maturational process with the “radiality index”, a parameter that measures directional coherence, which we expect to change rapidly in the perinatal period. To measure this index, we used structural T2-weighted MRI to segment the cortex and generate cortical meshes. We obtained normal vectors for each face of the mesh and compared them to the principal diffusion direction, calculated by both the DTI and DIAMOND models, to generate the radiality index. The subjects included in this study were 89 infants born at fewer than 34 weeks completed gestation, each imaged at up to four timepoints between 27 and 42 weeks gestational age. In this manuscript, we quantify the longitudinal trajectory of radiality, fractional anisotropy and mean diffusivity from the DTI and DIAMOND models. For the radiality index and fractional anisotropy, the DIAMOND model offers improved sensitivity over the DTI model. The radiality index has a consistent progression across time, with the rate of change depending on the cortical lobe. The occipital lobe changes most rapidly, and the frontal and temporal least: this is commensurate with known developmental anatomy. Analysing the radiality index offers information complementary to other diffusion parameters.

Publisher URL: www.sciencedirect.com/science

DOI: S1053811917306596

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.