3 years ago

Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects

Glucocorticoids were long believed to primarily function through cytosolic glucocorticoid receptor (GR) activation and subsequent classical genomic pathways. Recently, however, evidence has emerged that suggests the presence of rapid non-genomic GR-dependent signaling pathways within the brain, though their existence in spinal and peripheral nociceptive neurons remains elusive. In this paper, we aim to systemically identify GR within the spinal cord and periphery, to verify their putative membrane location and to characterize possible G protein coupling and pain modulating properties. Double immunofluorescence confocal microscopy revealed that GR predominantly localized in peripheral peptidergic and non-peptidergic nociceptive C- and Aδ-neurons and existed only marginally in myelinated mechanoreceptive and proprioreceptive neurons. Within the spinal cord, GR predominantly localized in incoming presynaptic nociceptive neurons, in pre- and postsynaptic structures of the dorsal horn, as well as in microglia. GR saturation binding revealed that these receptors are linked to the cell membrane of sensory neurons and, upon activation, they trigger membrane targeted [35S]GTPγS binding, indicating G protein coupling to a putative receptor. Importantly, subcutaneous dexamethasone immediately and dose-dependently attenuated acute nociceptive behavior elicited in an animal model of formalin-induced pain hypersensitivity compared to naive rats. Overall, this study provides firm evidence for a novel neuronal mechanism of GR agonists that is rapid, non-genomic, dependent on membrane binding and G protein coupling, and acutely modulates nociceptive behavior, thus unraveling a yet unconsidered mechanism of pain relief.

Publisher URL: www.sciencedirect.com/science

DOI: S0028390816303549

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.