5 years ago

Shaping the synaptic signal: molecular mobility inside and outside the cleft

Rapid communication in the brain relies on the release and diffusion of small transmitter molecules across the synaptic cleft. How these diffuse signals are transformed into cellular responses is determined by the scatter of target postsynaptic receptors, which in turn depends on receptor movement in cell membranes. Thus, by shaping information transfer in neural circuits, mechanisms that regulate molecular mobility affect nearly every aspect of brain function and dysfunction. Here we review two facets of molecular mobility that have traditionally been considered separately, namely extracellular and intra-membrane diffusion. By focusing on the interplay between these processes we illustrate the remarkable versatility of signal formation in synapses and highlight areas of emerging understanding in the molecular physiology and biophysics of synaptic transmission.

Publisher URL: www.sciencedirect.com/science

DOI: S0166223611000397

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.