3 years ago

MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial–mesenchymal transition, decreased ERα expression and AKT activation

Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line (MCF-7-Tam-R) by continuously incubating MCF-7 cells with 4-OH-tamoxifen. We found that melanoma cell adhesion molecule (MCAM/CD146), a unique epithelial-to-mesenchymal transition (EMT) inducer, was significantly up-regulated at both mRNA and protein levels in MCF-7-Tam-R cells compared to parental MCF-7 cells. Mechanistic research demonstrated that MCAM promotes tamoxifen resistance by transcriptionally suppressing ERα expression and activating the AKT pathway, followed by induction of EMT. Elevated MCAM expression was inversely correlated with recurrence-free and distant metastasis-free survival in a cohort of 4142 patients with breast cancer derived from a public database, particularly in the subgroup only treated with tamoxifen. These results demonstrate a novel function of MCAM in conferring tamoxifen resistance in breast cancer. Targeting MCAM might be a promising therapeutic strategy to overcome tamoxifen resistance in breast cancer patients.

Publisher URL: www.sciencedirect.com/science

DOI: S0304383516306826

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.