5 years ago

Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations
Karol Kowalski, Bo Peng
The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon–hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, Nb, ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows versus cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from to with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10–4 to 10–3 to give acceptable compromise between efficiency and accuracy.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00605

DOI: 10.1021/acs.jctc.7b00605

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.