3 years ago

Acceleration Strategies to Enhance Metabolic Ensemble Modeling Performance

Acceleration Strategies to Enhance Metabolic Ensemble Modeling Performance
Andreas Wäechter, Linda J. Broadbelt, Jennifer L. Greene, Keith E.J. Tyo


Developing reliable, predictive kinetic models of metabolism is a difficult, yet necessary, priority toward understanding and deliberately altering cellular behavior. Constraint-based modeling has enabled the fields of metabolic engineering and systems biology to make great strides in interrogating cellular metabolism but does not provide sufficient insight into regulation or kinetic limitations of metabolic pathways. Moreover, the growth-optimized assumptions that constraint-based models often rely on do not hold when studying stationary or persistor cell populations. However, developing kinetic models provides many unique challenges, as many of the kinetic parameters and rate laws governing individual enzymes are unknown. Ensemble modeling (EM) was developed to circumnavigate this challenge and effectively sample the large kinetic parameter solution space using consistent experimental datasets. Unfortunately, EM, in its base form, requires long solve times to complete and often leads to unstable kinetic model predictions. Furthermore, these limitations scale prohibitively with increasing model size. As larger metabolic models are developed with increasing genetic information and experimental validation, the demand to incorporate kinetic information increases. Therefore, in this work, we have begun to tackle the challenges of EM by introducing additional steps to the existing method framework specifically through reducing computation time and optimizing parameter sampling. We first reduce the structural complexity of the network by removing dependent species, and second, we sample locally stable parameter sets to reflect realistic biological states of cells. Lastly, we presort the screening data to eliminate the most incorrect predictions in the earliest screening stages, saving further calculations in later stages. Our complementary improvements to this EM framework are easily incorporated into concurrent EM efforts and broaden the application opportunities and accessibility of kinetic modeling across the field.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30843-3

DOI: 10.1016/j.bpj.2017.07.018

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.