5 years ago

sw ApoMb Amyloid Aggregation under Nondenaturing Conditions: The Role of Native Structure Stability

sw ApoMb Amyloid Aggregation under Nondenaturing Conditions: The Role of Native Structure Stability
Valentina E. Bychkova, Natalya S. Katina, Vitalii A. Balobanov, Victor V. Marchenkov, Victor D. Vasiliev, Nelly B. Ilyina, Alexey D. Nikulin, Anatoly S. Glukhov


Investigation of the molecular mechanisms underlying amyloid-related human diseases attracts close attention. These diseases, the number of which currently is above 40, are characterized by formation of peptide or protein aggregates containing a cross-β structure. Most of the amyloidogenesis mechanisms described so far are based on experimental studies of aggregation of short peptides, intrinsically disordered proteins, or proteins under denaturing conditions, and studies of amyloid aggregate formations by structured globular proteins under conditions close to physiological ones are still in the initial stage. We investigated the effect of amino acid substitutions on propensity of the completely helical protein sperm whale apomyoglobin (sw ApoMb) for amyloid formation from its structured state in the absence of denaturing agents. Stability and aggregation of mutated sw ApoMb were studied using circular dichroism, Fourier transform infrared spectroscopy, x-ray diffraction, native electrophoresis, and electron microscopy techniques. Here, we demonstrate that stability of the protein native state determines both protein aggregation propensity and structural peculiarities of formed aggregates. Specifically, structurally stable mutants show low aggregation propensity and moderately destabilized sw ApoMb variants form amyloids, whereas their strongly destabilized mutants form both amyloids and nonamyloid aggregates.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)30809-3

DOI: 10.1016/j.bpj.2017.07.011

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.