4 years ago

Fine scale mapping of genomic introgressions within the <i>Drosophila yakuba</i> clade

David A. Turissini, Daniel R. Matute

by David A. Turissini, Daniel R. Matute

The process of speciation involves populations diverging over time until they are genetically and reproductively isolated. Hybridization between nascent species was long thought to directly oppose speciation. However, the amount of interspecific genetic exchange (introgression) mediated by hybridization remains largely unknown, although recent progress in genome sequencing has made measuring introgression more tractable. A natural place to look for individuals with admixed ancestry (indicative of introgression) is in regions where species co-occur. In west Africa, D. santomea and D. yakuba hybridize on the island of São Tomé, while D. yakuba and D. teissieri hybridize on the nearby island of Bioko. In this report, we quantify the genomic extent of introgression between the three species of the Drosophila yakuba clade (D. yakuba, D. santomea), D. teissieri). We sequenced the genomes of 86 individuals from all three species. We also developed and applied a new statistical framework, using a hidden Markov approach, to identify introgression. We found that introgression has occurred between both species pairs but most introgressed segments are small (on the order of a few kilobases). After ruling out the retention of ancestral polymorphism as an explanation for these similar regions, we find that the sizes of introgressed haplotypes indicate that genetic exchange is not recent (>1,000 generations ago). We additionally show that in both cases, introgression was rarer on X chromosomes than on autosomes which is consistent with sex chromosomes playing a large role in reproductive isolation. Even though the two species pairs have stable contemporary hybrid zones, providing the opportunity for ongoing gene flow, our results indicate that genetic exchange between these species is currently rare.

Publisher URL: http://feeds.plos.org/~r/plosgenetics/NewArticles/~3/gwRR4Bxjigk/article

DOI: 10.1371/journal.pgen.1006971

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.