5 years ago

Cross-Linked Collagen Triple Helices by Oxime Ligation

Cross-Linked Collagen Triple Helices by Oxime Ligation
Helma Wennemers, Nina B. Hentzen, Sereina Riniker, Jagna Witek, Linde E. J. Smeenk
Covalent cross-links are crucial for the folding and stability of triple-helical collagen, the most abundant protein in nature. Cross-linking is also an attractive strategy for the development of synthetic collagen-based biocompatible materials. Nature uses interchain disulfide bridges to stabilize collagen trimers. However, their implementation into synthetic collagen is difficult and requires the replacement of the canonical amino acids (4R)-hydroxyproline and proline by cysteine or homocysteine, which reduces the preorganization and thereby stability of collagen triple helices. We therefore explored alternative covalent cross-links that allow for connecting triple-helical collagen via proline residues. Here, we present collagen model peptides that are cross-linked by oxime bonds between 4-aminooxyproline (Aop) and 4-oxoacetamidoproline placed in coplanar Xaa and Yaa positions of neighboring strands. The covalently connected strands folded into hyperstable collagen triple helices (Tm ≈ 80 °C). The design of the cross-links was guided by an analysis of the conformational properties of Aop, studies on the stability and functionalization of Aop-containing collagen triple helices, and molecular dynamics simulations. The studies also show that the aminooxy group exerts a stereoelectronic effect comparable to fluorine and introduce oxime ligation as a tool for the functionalization of synthetic collagen.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07498

DOI: 10.1021/jacs.7b07498

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.