5 years ago

Identification of SLIRP as a G Quadruplex-Binding Protein

Identification of SLIRP as a G Quadruplex-Binding Protein
Xiaoli Dong, Preston Williams, Yinsheng Wang, Lin Li
The guanine quadruplex (G4) structure in DNA is a secondary structure motif that plays important roles in DNA replication, transcriptional regulation, and maintenance of genomic stability. Here, we employed a quantitative mass spectrometry-based approach to profile the interaction proteomes of three well-defined G4 structures derived from the human telomere and the promoters of cMYC and cKIT genes. We identified SLIRP as a novel G4-interacting protein. We also demonstrated that the protein could bind directly with G4 DNA with Kd values in the low nanomolar range and revealed that the robust binding of the protein toward G4 DNA requires its RRM domain. We further assessed, by using CRISPR-Cas9-introduced affinity tag and ChIP-Seq analysis, the genome-wide occupancy of SLIRP, and showed that the protein binds preferentially to G-rich DNA sequences that can fold into G4 structures. Together, our results uncovered a novel cellular protein that can interact directly with G4 DNA, which underscored the complex regulatory networks involved in G4 biology.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07563

DOI: 10.1021/jacs.7b07563

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.