5 years ago

Stability of equidimensional pseudo-single-domain magnetite over billion-year timescales [Earth, Atmospheric, and Planetary Sciences]

Stability of equidimensional pseudo-single-domain magnetite over billion-year timescales [Earth, Atmospheric, and Planetary Sciences]
Wyn Williams, Lesleis Nagy, Trevor P. Almeida, Padraig O Conbhui, Karl Fabian, Adrian R. Muxworthy, Valera P. Shcherbakov

Interpretations of paleomagnetic observations assume that naturally occurring magnetic particles can retain their primary magnetic recording over billions of years. The ability to retain a magnetic recording is inferred from laboratory measurements, where heating causes demagnetization on the order of seconds. The theoretical basis for this inference comes from previous models that assume only the existence of small, uniformly magnetized particles, whereas the carriers of paleomagnetic signals in rocks are usually larger, nonuniformly magnetized particles, for which there is no empirically complete, thermally activated model. This study has developed a thermally activated numerical micromagnetic model that can quantitatively determine the energy barriers between stable states in nonuniform magnetic particles on geological timescales. We examine in detail the thermal stability characteristics of equidimensional cuboctahedral magnetite and find that, contrary to previously published theories, such nonuniformly magnetized particles provide greater magnetic stability than their uniformly magnetized counterparts. Hence, nonuniformly magnetized grains, which are commonly the main remanence carrier in meteorites and rocks, can record and retain high-fidelity magnetic recordings over billions of years.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.