5 years ago

Electronic Couplings for Charge Transfer across Molecule/Metal and Molecule/Semiconductor Interfaces: Performance of the Projector Operator-Based Diabatization Approach

Electronic Couplings for Charge Transfer across Molecule/Metal and Molecule/Semiconductor Interfaces: Performance of the Projector Operator-Based Diabatization Approach
Jochen Blumberger, Zdenek Futera
One principal parameter determining charge transfer rates between molecules and metals is the electronic coupling strength between the discrete electronic states of the molecule and the band states of the metal. Their calculation with computational chemistry methods remains challenging, both conceptually and in practice. Here, we report the implementation of the projection-operator diabatization (POD) approach of Kondov et al. (J. Phys. Chem. C 2007, 111, 11970–11981) in the CP2K program package, which extends the range of applications to charge transfer at infinite periodic surfaces. In the POD approach the self-consistent Kohn–Sham Hamiltonian of the full system is partitioned in donor (e.g., molecule) and acceptor (e.g., metal) blocks which are block-diagonalized. The coupling matrix elements between donor and acceptor states are simply identified with the matrix elements of the off-diagonal block. We find that the POD method performs similarly well as constrained DFT (CDFT) on the HAB11 database for excess hole transfer between simple organic dimers, with a mean relative unsigned error of 9.3 %, compared to 5.3 % in CDFT. By studying two case examples, electron injection from a dye molecule to TiO2 and electron transfer from a molecule, that forms self-assembled monolayers, to metallic Au(111), we demonstrate that the POD method is a useful and cost-effective tool for estimation of electronic coupling across heterogeneous interfaces.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06566

DOI: 10.1021/acs.jpcc.7b06566

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.