5 years ago

Spectroscopic investigation on graphene-copper nanocomposites with strong UV emission and high catalytic activity

Spectroscopic investigation on graphene-copper nanocomposites with strong UV emission and high catalytic activity
In this work, we described the synthesis of pure graphene sheets (≤5 layers) and graphene-copper nanocomposites by using the commercial microwave oven and l -ascorbic acid (LAA), as a cost effective and environmental friendly approach. The successful formation of composites, few layer graphene sheets (FLG) with copper nanostructures, was confirmed by the X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. The optical studies of the prepared samples exhibited band-band transition related strong UV absorption and strong UV emission alone with no visible range emission that supported the successful formation of graphene sheets with insignificant surface functional groups. The observed luminescence quenching in the composites when compared with the pure graphene sheets was discussed. Further we demonstrated the usage of these composites as a catalyst for hazardous azo dye reduction. The comparative study of the pure graphene and graphene-copper composites in the reduction of azo dye showed that the composites exhibited a rapid and higher catalytic activity than the pure graphene sheets.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317308503

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.