5 years ago

Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration

Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration
Organic solvent nanofiltration (OSN) membranes with excellent and tuneable molecular separation performances are important in pharmaceutical industry. Here, we report reduced graphene oxide (rGO) membranes intercalated with self-assembled 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin (TMPyP) molecules for this purpose. These membranes showed strong tolerances to water and various organic solvents and their OSN performances can be easily tuned by controlling the amount of intercalated porphyrin molecules. The methanol permeance of an rGO membrane (mass loading = 44 mg m−2) was increased by 2 times upon intercalating 60% TMPyP relative to its own weight. This composite membrane also exhibited high rejection (>92%) for negatively charged organic dyes with molecular dimensions larger than 1.7 nm in methanol. As a demonstration, it was used to separate vitamin B12 from its aqueous or methanol solution, exhibiting a solvent permeance of 5.76 or 4.40 L m−2 h−1 bar−1 and a rejection of 98.4% or 91.0%.

Publisher URL: www.sciencedirect.com/science

DOI: S000862231730828X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.