4 years ago

Molecular Dynamics of Double Stranded Xylo-Nucleic Acid

Molecular Dynamics of Double Stranded Xylo-Nucleic Acid
Piet Herdewijn, Daryna Smyrnova, Arnout Ceulemans, Mathy Froeyen, Mohitosh Maiti, Amutha Ramaswamy
Xylo-nucleic acid (XyloNA) is a synthetic analogue of ribo-nucleic acid (RNA), where the ribose sugar has been replaced by xylose. We present a molecular dynamics study of the conformational evolution of XyloNA double strand oligomers derived from A-RNA through the substitution of β-d-ribofuranose by β-d-xylofuranose and having lengths of 8, 16, and 29 base pairs, using a set of independent all-atom simulations performed at various time scales ranging from 55 to 100 ns, with one long 500 ns simulation of the 29-mer. In order to validate the robustness of XyloNA conformation, a set of simulations using various cutoff distances and solvation box dimensions has also been performed. These independent simulations reveal the uncoiling or elongation of the initial conformation to form an open ladder type transient state conformation and the subsequent formation of a highly flexible duplex with a tendency to coil in a left-handed fashion. The observed open ladder conformation is in line with recently obtained NMR data on the XyloNA 8-mer derived using 5′-d(GUGUACAC)-3′. The observed negative interbase pair twist leads to the observed highly flexible left-handed duplex, which is significantly less rigid than the stable left-handed dXyloNA duplex having a strong negative twist. A comparison between the xylo-analogues of DNA and RNA shows a clear distinction between the helical parameters, with implications for the pairing mechanism.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00309

DOI: 10.1021/acs.jctc.7b00309

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.