5 years ago

Outer-Sphere Reactivity Shift of Secondary Phosphine Oxide-Based Nickel Complexes: From Ethylene Hydrophosphinylation to Oligomerization

Outer-Sphere Reactivity Shift of Secondary Phosphine Oxide-Based Nickel Complexes: From Ethylene Hydrophosphinylation to Oligomerization
Hélène Olivier-Bourbigou, Pierre-Alain R. Breuil, Rudy Lhermet, Emile Moser, Erwann Jeanneau
A new dimension for secondary phosphine oxide (SPOs) ligands is described in this article. Demonstrated on original π-allylic nickel structures, these self-assembled complexes trigger catalytic hydrophosphinylation reactions. Addition of a Lewis acid B(C6F5)3 switches the reactivity towards migratory insertion and thus ethylene oligomerization through an unprecedented outer-sphere interaction with the coordinated SPO ligand. NMR experiments and X-ray analyses allowed for the observation of the formation of zwitterionic active species as well as their degradation pathway. On the outer sphere: A new dimension for secondary phosphine oxide (SPOs) ligands is described in this article. Demonstrated on original π-allylic nickel structures, these self-assembled complexes trigger catalytic hydrophosphinylation reactions. Addition of a Lewis acid B(C6F5)3 switches the reactivity towards migratory insertion and thus ethylene oligomerization through an unprecedented outer-sphere interaction with the coordinated SPO ligand.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701414

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.