5 years ago

α3 Integrin of Cell-Cell Contact Mediates Kidney Fibrosis by Integrin-Linked Kinase in Proximal Tubular E-Cadherin Deficient Mice

Loss of E-cadherin marks a defect in epithelial integrity and polarity during tissue injury and fibrosis. Whether loss of E-cadherin plays a causal role in fibrosis is uncertain. α3β1 Integrin has been identified to complex with E-cadherin in cell-cell adhesion, but little is known about the details of their cross talk. Herein, E-cadherin gene (Cdh1) was selectively deleted from proximal tubules of murine kidney by Sglt2Cre. Ablation of E-cadherin up-regulated α3β1 integrin at cell-cell adhesion. E-cadherin–deficient proximal tubular epithelial cell displayed enhanced transforming growth factor-β1–induced α-smooth muscle actin (α-SMA) and vimentin expression, which was suppressed by siRNA silencing of α3 integrin, but not β1 integrin. Up-regulation of transforming growth factor-β1–induced α-SMA was mediated by an α3 integrin-dependent increase in integrin-linked kinase (ILK). Src phosphorylation of β-catenin and consequent p-β-catenin-Y654/p-Smad2 transcriptional complex underlies the transcriptional up-regulation of ILK. Kidney fibrosis after unilateral ureteric obstruction or ischemia reperfusion was increased in proximal tubule E-cadherin–deficient mice in comparison to that of E-cadherin intact control mice. The exacerbation of fibrosis was explained by the α3 integrin-dependent increase of ILK, β-catenin nuclear translocation, and α-SMA/proximal tubular–specific Cre double positive staining in proximal tubular epithelial cell. These studies delineate a nonconventional integrin/ILK signaling by α3 integrin–dependent Src/p-β-catenin-Y654/p-Smad2–mediated up-regulation of ILK through which loss of E-cadherin leads to kidney fibrosis.

Publisher URL: www.sciencedirect.com/science

DOI: S0002944016300840

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.