3 years ago

Relationship of Structural to Functional Impairment during Alveolar-Capillary Membrane Development

Bronchopulmonary dysplasia is a chronic lung disease of extreme preterm infants and results in impaired gas exchange. Although bronchopulmonary dysplasia is characterized histologically by alveolar-capillary simplification in animal models, it is clinically defined by impaired gas diffusion. With the use of a developmentally relevant model, we correlated alveolar-capillary structural simplification with reduced functional gas exchange as measured by the diffusing factor for carbon monoxide (DFCO). Neonatal mouse pups were exposed to >90% hyperoxia or room air during postnatal days 0 to 7, and then all pups were returned to room air from days 7 to 56. At day 56, DFCO was measured as the ratio of carbon monoxide uptake to neon dilution, and lungs were fixed for histologic assessment of alveolar-capillary development. Neonatal hyperoxia exposure inhibited alveolar-capillary septal development as evidenced by significantly increased mean linear intercept, increased airspace-to-septal ratio, decreased nodal density, and decreased pulmonary microvasculature. Importantly, alveolar-capillary structural deficits in hyperoxia-exposed pups were accompanied by a significant 28% decrease in DFCO (0.555 versus 0.400; P < 0.0001). In addition, DFCO was highly and significantly correlated with structural measures of reduced alveolar-capillary growth. Simplification of alveolar-capillary structure is highly correlated with impaired gas exchange function. Current mechanistic and therapeutic animal models of inhibited alveolar development may benefit from application of DFCO as an alternative physiologic indicator of alveolar-capillary development.

Publisher URL: www.sciencedirect.com/science

DOI: S0002944015000140

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.