5 years ago

Deletion of Mir155 Prevents Fas-Induced Liver Injury through Up-Regulation of Mcl-1

Fas-induced apoptosis is involved in diverse liver diseases. Herein, we investigated the effect of Mir155 deletion on Fas-induced liver injury. Wild-type (WT) mice and Mir155 knockout (KO) mice were i.p. administered with the anti-Fas antibody (Jo2) to determine animal survival and the extent of liver injury. After Jo2 injection, the Mir155 KO mice exhibited prolonged survival versus the WT mice (P < 0.01). The Mir155 KO mice showed lower alanine aminotransferase and aspartate aminotransferase levels, less liver tissue damage, fewer apoptotic hepatocytes, and lower liver tissue caspase 3/7, 8, and 9 activities compared with the WT mice, indicating that Mir155 deletion prevents Fas-induced hepatocyte apoptosis and liver injury. Hepatocytes isolated from Mir155 KO mice also showed resistance to Fas-induced apoptosis, in vitro. Higher protein level of myeloid cell leukemia-1 (Mcl-1) was also observed in Mir155 KO hepatocytes compared to WT hepatocytes. A miR-155 binding site was identified in the 3′-untranslated region of Mcl-1 mRNA; Mcl1 was identified as a direct target of miR-155 in hepatocytes. Consistently, pretreatment with a siRNA specific for Mcl1 reversed Mir155 deletion–mediated protection against Jo2-induced liver tissue damage. Finally, restoration of Mir155 expression in Mir155 KO mice abolished the protection against Fas-induced hepatocyte apoptosis. Taken together, these findings demonstrate that deletion of Mir155 prevents Fas-induced hepatocyte apoptosis and liver injury through the up-regulation of Mcl1.

Publisher URL: www.sciencedirect.com/science

DOI: S0002944015000322

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.