4 years ago

Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides

Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides
Pharmacokinetic properties of oligonucleotides are largely driven by chemistry of the backbone and thus are sequence independent within a chemical class. Tissue bioavailability (% of administered dose) is assisted by plasma protein binding that limits glomerular filtration and ultimate urinary excretion of oligonucleotides. The substitution of one non-bridging oxygen with the more hydrophobic sulfur atom (phosphorothioate) increases both plasma stability and plasma protein binding and thus, ultimately, tissue bioavailability. Additional modifications of the sugar at the 2′ position, increase RNA binding affinity and significantly increase potency, tissue half-life and prolong RNA inhibitory activity. Oligonucleotides modified in this manner consistently exhibit the highest tissue bioavailability (>90%). Systemic biodistribution is broad, and organs typically with highest concentrations are liver and kidney followed by bone marrow, adipocytes, and lymph nodes. Cell uptake is predominantly mediated by endocytosis. Both size and charge for most oligonucleotides prevents distribution across the blood brain barrier. However, modified single-strand oligonucleotides administered by intrathecal injection into the CSF distribute broadly in the CNS. The majority of intracellular oligonucleotide distribution following systemic or local administration occurs rapidly in just a few hours following administration and is facilitated by rapid endocytotic uptake mechanisms. Further understanding of the intracellular trafficking of oligonucleotides may provide further enhancements in design and ultimate potency of antisense oligonucleotides in the future.

Publisher URL: www.sciencedirect.com/science

DOI: S0169409X15000101

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.