5 years ago

Modulating the Bonding Properties of N-Heterocyclic Carbenes (NHCs): A Systematic Charge-Displacement Analysis

Modulating the Bonding Properties of N-Heterocyclic Carbenes (NHCs): A Systematic Charge-Displacement Analysis
Carlo Alberto Gaggioli, Giovanni Bistoni, Gianluca Ciancaleoni, Paola Belanzoni, Francesco Tarantelli, Leonardo Belpassi
In view of their intensive use as ligands in many reactions catalyzed by transition-metal complexes, modulation of the bonding properties of N-heterocyclic carbenes (NHCs) on a rational basis is highly desirable, which should enable optimization of current applications or even promote new functions. In this paper, we provide a quantitative analysis of the chemical bond between a metal fragment AuCl and a series of 29 different NHCs in [(NHC)AuCl] complexes. NHCs electronic properties are modified through: i) variation of the groups attached to the NHC nitrogen atoms or backbone; ii) change of unsaturation/size of the NHC ring; iii) inclusion of paracyclophane moieties; or iv) heteroatom substitution on the NHC ring. For evaluating the donation and back-donation components of the Dewar–Chatt–Duncanson (DCD) model in the NHC−AuCl bond, we apply the charge-displacement (CD) analysis within the NOCV (natural orbitals for chemical valence) framework, a methodology that avoids the constraint of using symmetrized structures. We show that modulation of the NHC bonding properties requires substantial modification of their structure, such as, for instance, insertion of two ketone groups into the NHC backbone (which enhances the π back-donation bond component and introduces an effective electronic communication within the NHC ring) or replacement of a nitrogen atom in the ring with an sp3 or sp2 carbon atom (which increases and decreases the π back-donation bond component, respectively). We extend our investigation by quantitatively comparing the NHC electronic structures for a subset of 13 NHCs in [(NHC)PPh] adducts, the 31P NMR chemical shift values of which are experimentally available. The latter have been considered as a suitable tool for measuring the NHCs π acceptor properties [Bertrand et al., Angew. Chem. Int. Ed. 2013, 52, 2939–2943]. We show that information obtained using the metal fragment can be transferred to the PPh moiety and vice versa. However, the 31P NMR chemical shift values only qualitatively correlate with the π acceptor properties of the NHCs, with the stronger π acidic carbenes as the most outliners. Make substantial changes to the NHC structure! Modulation of the bonding properties of N-heterocyclic carbenes (NHCs) requires significant modification of their structure, such as insertion of two ketone groups on the NHC backbone or replacement of a nitrogen atom in the ring by an sp3 or sp2 carbon atom (see scheme).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201700638

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.