5 years ago

Characterization of a novel intrinsically radiopaque Drug-eluting Bead for image-guided therapy: DC Bead LUMI™

Characterization of a novel intrinsically radiopaque Drug-eluting Bead for image-guided therapy: DC Bead LUMI™
We have developed a straightforward and efficient method of introducing radiopacity into Polyvinyl alcohol (PVA)-2-Acrylamido-2-methylpropane sulfonic acid (AMPS) hydrogel beads (DC Bead™) that are currently used in the clinic to treat liver malignancies. Coupling of 2,3,5-triiodobenzaldehyde to the PVA backbone of pre-formed beads yields a uniformly distributed level of iodine attached throughout the bead structure (~150mg/mL) which is sufficient to be imaged under standard fluoroscopy and computed tomography (CT) imaging modalities used in treatment procedures (DC Bead LUMI™). Despite the chemical modification increasing the density of the beads to ~1.3g/cm3 and the compressive modulus by two orders of magnitude, they remain easily suspended, handled and administered through standard microcatheters. As the core chemistry of DC Bead LUMI™ is the same as DC Bead™, it interacts with drugs using ion-exchange between sulfonic acid groups on the polymer and the positively charged amine groups of the drugs. Both doxorubicin (Dox) and irinotecan (Iri) elution kinetics for all bead sizes evaluated were within the parameters already investigated within the clinic for DC Bead™. Drug loading did not affect the radiopacity and there was a direct relationship between bead attenuation and Dox concentration. The ability (Dox)-loaded DC Bead LUMI™ to be visualized in vivo was demonstrated by the administration of into hepatic arteries of a VX2 tumor-bearing rabbit under fluoroscopy, followed by subsequent CT imaging.

Publisher URL: www.sciencedirect.com/science

DOI: S0168365917300561

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.