5 years ago

Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines content release kinetics

Inhomogeneous crystal grain formation in DPPC-DSPC based thermosensitive liposomes determines content release kinetics
Thermosensitive liposomes (TSL) receive attention due to their rapid externally controlled drug release at transition temperature in combination with hyperthermia. This rapid release feature of TSL occurs when the liposome membrane is going through a phase change which results in numerous interfaces, at so-called crystal grain boundaries. Based on experience with TSLs, our group found that thermosensitive liposomes formulated by binary compositions of DPPC and DSPC at proper ratios are able to exhibit rapid release without incorporation of release-promoting components. The aim of this study was to understand the mechanism of rapid release from bi-component DPPC-DSPC based TSL. Based on the investigation of a series of TSLs formulated by different DPPC-DSPC ratios, and through the analysis of binary-phase diagrams of DPPC-DSPC TSLs, we conclude that inhomogeneous crystal grains are formed in bi-component TSL membranes rather than mono-component, thereby facilitating content release. The resulting inhomogeneous membrane pattern is affected by DPPC/DSPC ratio, i.e. this determines the number of interfaces between solid and liquid phases at transition temperature, which can be diminished by addition of cholesterol. At appropriate DPPC/DSPC ratio, substantive solid/liquid interfaces can be generated not only between membrane domains but also between crystal grains in each domain of the liposome membranes, therefore improving content release from the TSL at transition temperatures.

Publisher URL: www.sciencedirect.com/science

DOI: S0168365916308914

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.