5 years ago

Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking

Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking
The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (I Kr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (I hERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward I hERG tails with a half-maximal inhibitory concentration (IC50) of ∼45nM, whilst inward I hERG tails in a high K+ external solution ([K+]e) of 94mM were blocked with an IC50 of 117.8nM. Amiodarone’s inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT I hERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant I hERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity I hERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624AY652A>F656A>V659A>G648A>T623A.

Publisher URL: www.sciencedirect.com/science

DOI: S000629521630106X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.