5 years ago

Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity

Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity
Docking and molecular dynamics (MD) simulation have been two computational techniques used to gain insight about the substrate orientation within protein active sites, allowing to identify potential residues involved in the binding and catalytic mechanisms. In this study, both methods were combined to predict the regioselectivity in the binding mode of valproic acid (VPA) on three cytochrome P-450 (CYP) isoforms CYP2C9, CYP2C11, and CYP2E1, which are involved in the biotransformation of VPA yielding reactive hepatotoxic intermediate 2-n-propyl-4-pentenoic acid (4nVPA). There are experimental data about hydrogen atom abstraction of the C4-position of VPA to yield 4nVPA, however, there are not structural evidence about the binding mode of VPA and 4nVPA on CYPs. Therefore, the complexes between these CYP isoforms and VPA or 4nVPA were studied to explore their differences in binding and energetic stabilization. Docking results showed that VPA and 4nVPA are coupled into CYPs binding site in a similar conformation, but it does not explain the VPA hydrogen atom abstraction. On the other hand, MD simulations showed a set of energetic states that reorient VPA at the first ns, then making it susceptible to a dehydrogenation reaction. For 4nVPA, multiple binding modes were observed in which the different states could favor either undergo other reaction mechanism or ligand expulsion from the binding site. Otherwise, the energetic and entropic contribution point out a similar behavior for the three CYP complexes, showing as expected a more energetically favorable binding free energy for the complexes between CYPs and VPA than with 4nVPA.

Publisher URL: www.sciencedirect.com/science

DOI: S0006295214002585

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.